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Fault motion and curved slickenlines: a theoretical analysis 
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Abstract--Slickenlines record on a fault surface the nature of relative movement of the faulted blocks. An 
assemblage of straight slickenlines indicates linear-translational fault motion. Curved slickenlines, on the other 
hand, may arise either due to rotational-translational fault motion or due to fault motions where the translation 
direction changes continuously (curvilinear-translational fault motion). The analysis of roto-translational fault 
motion involves the ratio of relative rate of rotation vs translation whereas that of curvilinear-translational fault 
motion involves the ratio of rate of change of translation direction to the rate of translation. The analyses reveal 
that an assemblage of curved slickenlines where each slickenline differs in shape from the other is indicative of 
roto-translational fault motion, whereas an assemblage where the slickenlines are of similar shape is the 
consequence of curvilinear-translational fault motion. 

INTRODUCTION 

SURFACES, along which there were sliding movements, 
are often characterized by linear features termed 
slickenlines (Fleuty 1975). Fault surfaces are by far the 
most common locales of such features. There are several 
types of slickenlines which differ in their characters and 
modes of origin (Means 1987). However, in all cases 
their geometries are related to the nature of relative 
movement of the rigid blocks along the discontinuity 
surface. Any slickenline among a set of slickenlines, 
marked either by simple striations or by displacement- 
controlled fibre growth, characteristically records on the 
fault surface the locus of movement, on that surface, of 
a point fixed on the sliding surface of the opposite block 
(Ramsay & Huber 1983, Means 1987). Thus, assuming 
the blocks to be rigid the nature of relative movement of 
the blocks can be deciphered from the shapes of slicken- 
lines. 

A set of straight slickenlines indicates linear-transla- 
tional motion of the faulted blocks. Curved slickenlines, 
on the other hand, represent either rotational-transla- 
tional (roto-translational) fault motion or curvilinear- 
translational fault motion, a fault motion where the 
translation direction of the relatively moving block 
changes continuously owing to re-orientation of the 
stress system or change in relative magnitudes of the 
principal stresses (Bott 1959). This note presents quanti- 
tative analyses of the shapes of curved slickenlines result- 
ing from both kinds of fault motion and enumerates the 
distinguishing features of each type in order to decipher 
the nature of fault motion from natural curved slicken- 
lines. 

ANALYSES OF CURVED SLICKENLINES 

In order to depict the shapes of curved slickenlines we 
shall find the loci of migration, on the fault surface, of 

points fixed on the sliding surface of the relatively 
moving block and to do so we choose two reference 
frames, viz., a frame lying on the fault plane (XI01Yt) 
and the other on the sliding surface of the relatively 
moving block (2202112) (Fig. 1). The reference frame on 
the moving block is considered to be fixed with respect to 
the block itself, but moving with respect to the fault 
plane. The movement of the X20:Y2 frame with respect 
to the XtOtYt frame would, thus, essentially represent 
the locomotion of the relatively moving block (Fig. 1). 
The axes of the Xt01Y1 frame may be chosen to coincide 
with the strike and down-dip directions of the fault 
plane. At the onset of fault motion the two reference 
frames may be considered to coincide with each other; 
however, subsequently the X202Y2 frame would be dis- 
placed with respect to the X~OtYt frame and different 
points fixed on the sliding surface of the moving block 
would remain fixed with respect to the X202Y2 frame but 
would travel along different paths in the XIOtYI frame 
producing a set of slickenlines on the fault plane (Fig. 1, 
P paths). In order to analyse the shapes of slickenlines 
we shall find the pathline of a point fixed on the sliding 
surface of the moving block (i.e. on the Xz02Y2 frame) 
with respect to the XtOIYI frame for two different kinds 
of fault motion. 

Shapes of slickenlines resulting from roto-translational 
fault motion 

In roto-translational fault motion the relatively 
moving block performs rotational as well as translational 
motion. Figure l(a) depicts such fault motion showing 
the movement of the ,7(202}2 frame in the XtO1Y1 space. 
The center of rotation of the moving block is taken to 
coincide with the origin of the X202Yz frame and is 
assumed to be fixed for a finite interval of time. 
Naturally, the point on the sliding surface about which 
the moving block rotates would move in a straight line in 
the X101I"1 space defining the translation direction of the 
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Fig. 1, Diagram showing movement of the X202 Y2 frame and of a point fixed on that frame with respect to the Xt0t Yi frame 
in roto-translational fault motion (a) and in curvilinear-translational fault motion (b). In (a) 0z, the centre of rotation of the 
moving block (see text), translates along 0tX3 making an angle ~ with 0tXt. In (b) points on the curve marked by open circles 
denote the positions of the moving particle (P) at different instants (to . . . . .  8). P(t) and P(t + At) are any two positions in 

time interval At, As being eurvilinear distance travelled in this interval. 
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fault. We now choose another reference frame X301Y3 
on the fault plane whose X3-axis coincides with the locus 
of movement of the center of rotation of the moving 
block (Fig. la). 

Let the co-ordinate of any point P on the sliding 
surface of the moving block, at any instant be (x2, Y2) 
with respect to the X202Y 2 frame and that of the origin of 
the X202Y 2 frame at that instant be (u 3, 0) with respect to 
the X3OIY 3 frame (Fig. la). The co-ordinate of the point 
P with respect to the X30t I"3 frame can be expressed as 

X3 = U3 + Y2 COS 0 -F X 2 sin 0 (1) 

Y3 = Y2 sin 0 - x: cos 0, (2) 

where 0 is the angle between the X3-axis and the Y2-axis 
at the instant under consideration (Fig. la). In response 
to the movement of the block (and thus the X202Y 2 

frame) the point P, fixed on the moving block, would 
change its position with respect to the X3OtY3 frame. 
Thus, 

d0 
dxffdt = duffdt - Y2 sin 0 ~ + x2 cos 0 dO~dr (3) 

dya/dt = Y2 cos 0 dO~dr + x, sin 0 dO/dt. (4) 

Evidently, dua/dt (say ~) represents the rate of transla- 
tion of the center of rotation (i.e. the translational 
component of the moving block), whereas dO~dr (say w) 
represents the rate of rotation of the moving block. 
Thus. 

dya/dx 3 = Y2 cos 0 + x 2 sin 0 (5) 
6 - Y3 

where 6 = ~v/w. a measure of relative rate of translation 
vs rotation of the moving block, which can be considered 
to be the controlling parameter of the shape of the 

pathline of the point P (X 2, y:). Substituting the values of 
cos 0 and sin 0 as functions of Y3 from equation (2) and 
using r 2 = ~ + y2 (where r is the linear distance of the 
point P from the origin of the X202Y2 frame) we get, 

dya/dx 3 _ r'~-~- y~ (6) 
t~ -- Y3 

Solution of equation (6) gives, 

6 sin-1 y3/r + ~ / ~  = x3 + constant. (7) 

Equation (7) can be transformed into the X]01Y1 frame 
as follows, 

6 s in_~(y lcos  ¢ - x ~ s i n ¢ ) r  

+ ~/r 2 - (y] COS O - X1 sin ¢)2 

= xt cos ¢ + Yl sin ¢ + constant, (8) 

where ¢ is the angle between the X t-axis and the X3-axis. 
Equations (7) and (8) essentially represent the locus 

of migration, on the fault plane, of any point fixed on the 
sliding surface of the relatively moving block and thus 
describe the geometry of the slickenline produced by 
that point. Equation (7) shows that for a purely trans- 
lational fault motion (i,e. w = 0 and 6 = a) the slicken- 
lines will be straight, whereas for a purely rotational 
fault motion (i.e. q; = 0 and 6 = 0) the slickenlines will 
be arcs of concentric circles. For all intermediate values 
of 6, the slickenlines will be curved. 

Figure 2 shows assemblages of slickenlines generated 
by different points fixed on the sliding surface of the 
relatively moving block for different 6 values. The sig- 
nificant feature of the slickenlines of rata-translational 
faults, as revealed in the figure, is that the shape of 
individual slickenlines in an assemblage is different. 
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Fig. 2. Shapes of slickenlines for different 6 values in rata-translational fault motion. 

Another distinctive feature of these slickenlines is their 
gradual straightening towards the central part of the 
assemblage and reversal of the sense of curvature of the 
slickenlines across the straight slickenline. 

Shapes of slickenlines resulting from curvilinear- 
translational fault motion 

In this type of fault motion the relatively moving block 
does not rotate but changes its translation direction 
continuously. Figure l(b) depicts such fault motion 
showing the movement of the X202Y2 frame in the 
X101Y~ space. The points fixed on the sliding surface of 
the moving block, as a consequence, move in curvilinear 
paths on the fault plane defining the slickenlines (Fig. 
lb). It is evident from the figure that the rate of change 
of translation direction (W) can be expressed as the rate 
of change of slope of the tangents of the pathline (and 
thus the slickenline). Therefore, 

o r  

o r  

d/dt (dyt/dXl) = W (9) 

d/ds (dylldxl)dsldt = W 

d/ds (dytldx~) = WIS = K, (I0) 

where S = ds/dt and K = W/S. K is assumed to be 
constant for a finite interval of time. Now, 

d/dxl (dyl/dxt)dxt/ds = K 

oi" 

or 

d2yl/d l = K ds/dx, 

= KVI + (dyi/d ,) 2 

dyl/dx I = I/2[e ~'+c' - e-(~*+c')], (ii) 
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Fig. 3. Shapes of slickenlines for different K values in curvilinear fault motton. 

where c I is the integration constant. Solution of equation 
(11) for K = 0 gives dyJdx  1 = constant. 

This means that for linear-translational fault motion 
(i.e. when W = 0 and K = 0) the slickenlines will be 
straight. Solution of equation (11) for K # 0 gives, 

yl = 1/2K[ 1 + e2(C' + Kx') ] e(C. + Kx,) + c2, (12) 

where c2 is the integration constant. Equation (12) essen- 
tially represents the pathlines of the points fixed on the 
sliding surface of the moving block and thus the shapes 
of slickenlines resulting from curvilinear-translational 
fault motion. 

Figure 3 shows assemblages of slickenlines resulting 
from curvilinear fault motion for different K values. The 
characteristic feature of these slickenlines, as shown in 
the figure, is that all the slickenlines in the assemblage 
are of identical shape. Moreover, these slickenlines, in 
contradiction to that of the roto-translational fault 
motion, do not show any reversal of sense of curvature, 
nor do they straighten towards the central pan of the 
assemblage. 

DISCUSSION 

The above analyses have shown that curved slicken- 
lines may arise due either to roto-translational fault 
motion or to fault motions where the translation 
direction changes continuously during the fault move- 
ment. These analyses reveal that the two kinds of fault 
action can be deciphered from the shapes of their 
slickenlines. An assemblage of curved slickenlines in 
which each slickenline differs from the other in shape 
indicates roto-translational fault motion, whereas an 
assemblage where the shape of every slickenline is simi- 
lar suggests curvilinear-translational fault motion. Thus, 
the dip-isogons between any two slickcnlines in thc 
latter type of assemblage will be parallel, Furthermore, 
the slickenlines of roto-translational faults are charac- 
terized by their tendency to straighten towards the cen- 
tral part of the assemblage and a reversal of sense of 
curvature of the slickenlincs across the straight slickcn- 
line. 

The analysis of slickcnlincs of roto-translational fault 
motion can be applied to natural slickenlincs to estimatc 
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the relative rate of translation vs rotation (i.e. 6 value) in 
natural faults. The 6 value can be calculated from natural 
slickenlines using equation (8). However, application of 
the equation in natural situations requires fortuitous 
exposures exhibiting an assemblage of well-developed 
slickenlines with a straight slickenline so that the ~ value 
can be obtained. 

The analysis of curvilinear-translational fault motion 
can also be applied to natural situations to estimate the 
relative rate of change of translation direction with 
respect to the rate of translation. 
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